

Introduction and Background

Calgary Transit is launching a pilot project in Fall 2022 to implement the usage of 14 electric shuttle buses around the City of Calgary. These electric shuttle buses will be based out of Spring Gardens garage located at 928 32 Ave NE. The design of our project was focused on developing block schedules for these 14 electric shuttle buses while also minimizing cost and GHG emissions.

The focus on GHG emissions was based the City of Calgary's interest in exploring opportunities to reduce greenhouse gas emissions as part of the green fleet initiative. Cost is always a concern for public projects such as this. The second piece of criteria our group selected for our design was minimizing costs, addressing this concern of stakeholders.

REFERENCES

[1] http://www.busdrawings.com/Transit/alberta/ calgary/shuttle/arboc/1835-1844/index.htm

[2] https://vicinitymotorcorp.com/modelsm/ vicinity-lightning-ev.html

Grou (Sust Unc Inno

Winter

Calgary Electric Bus Pilot Project

Domenic Bruno; Waleed Elnahas; Adam Huskic; Saifullah Irshad; Arsalan Khurshid; Ahmad Mohammad Schulich School of Engineering, University of Calgary Special thanks to Jacob Lamb, Saadiq Mohiuddin, and Diana Soroaga for their support and contributions to this project.

Design Criteria Options

Our group choose between 3 design options in the fall using the following decision matrix. All design options sought to minimize GHG emission as well as minimize costs (Design 1), maximize ridership (Design 2), and target specific demographics (Design 3)

Factor	Weight	Design #1	Design #2	Design #3
o Interest ase of sis, Data uired)	2	3	2	1
rtance to eholders inability)	3	3	1	2
ertainty	1	2	1	3
ovation	2	1	2	3
verall nking		19	12	17

Design Considerations

Comparison of electric shuttle buses to

- gasoline shuttle buses
- Buses departing from and returning to spring gardens
- Buses cannot charge en route
- Electric heaters
- Range of buses is considerably different in

summer vs. winter

GHG Summary Table

The total % change in GHG emissions was -28.79%

Electricity Used Per km by One Bus (kWh/km)	Emissions Intensity of bus (kg CO2 eq/km)	Percent Change in GHG Emissions
0.9438	0.5191	-51.24%
0.9828	0.5405	-49.22%
1.0186	0.5602	-72.87%
3.1046	1.7076	60.41%
2.8905	1.5898	49.34%
3.2376	1.7807	67.27%
	Electricity Used Per km by One Bus (kWh/km) 0.9438 0.9828 0.9828 1.0186 3.1046 2.8905 2.8905 3.2376	Electricity Used Per km by One Bus (kWh/km)Emissions Intensity of bus (kg CO2 eq/km)0.94380.51910.98280.54051.01860.56023.10461.70762.89051.58983.23761.7807

Our new elec	fina bus tric
С	ost =
Cost =	= 0.7
Cost	= 0.7
	И
Ove com mod	erest nmor del to
Spe	ed (k 20
	30 40 50
	60 70 80 90
Pub actio foot proj	lic ons print ecte
Year	/vear
2021	49,9
2022	49,9

2023

2024

2035

RESULTS/ANALYSIS

Final Block Schedule

Seen below is an example of one block schedule designed by our group (Summer – Sunday). It shows when the buses run, the routes taken, and the distance travelled for each bus in a day.

Bus #	Block	Route	Distance (Km)	Start	End
1	17 - 91	17	194.336	6:25	19:03
2	17 - 92	17	194.336	7:10	19:48
3	30 - 91	30	224.948	7:17	19:02
4	40 - 93	40	236.396	7:55	19:02
5	404 - 91	404	202.003	6:40	18:48
6	411 - 91	411	177.731	8:47	18:57
7	414 - 91	414	200.96	8:39	19:25
8	502 - 91	502	187.714	7:42	19:02
9	302 - 92 A	302	228.444	5:07	14:18
10	302 - 92 B	302	226.05	13:51	22:58
11	114 - 91 A	86, 114	229.66	5:05	14:57
12	114 - 91 B	86, 114	232.412	14:20	0:28
13	114 - 92 A	86, 114	222.965	5:17	14:58
14	114 - 92 B	86, 114	233.603	14:25	0:40

Cost Summary Table

Block Name	Days	Cost Difference/Day	Cost Difference
Summer Weekday	141	\$(276.32)	\$(38,960.91)
Summer Saturday	29	\$52.41	\$1,519.91
Summer Sunday	28	\$(258.16)	\$(7,228.45)
Winter Weekday	119	\$1,403.80	\$167,051.83
Winter Saturday	24	\$1,787.65	\$42,903.62
Winter Sunday	24	\$1,655.73	\$39,737.42
Yearly Total	365		<u>\$205,023.42</u>

Recommendations and Conclusion

We have developed block schedules for both winter and summer. Weekdays and weekends each have their own feasible block schedule based on seasonal ranges, minimizing GHG emissions and cost. We have developed 6 block schedules (3 for winter, 3 for summer). Our primary recommendation would be to not use electric heaters since they considerately reduced the range of the electric buses.