

- microprocessors. Certain parameters influence microchannel performance such as fluid properties, bubble dynamics, and bubble trains
- When analyzing these parameters, we found that:
- Heat transfer is reduced when the bubbles coalesce in the heated region
- Heat transfer is increased when the bubble coalesces upstream of the heated region due to the smaller liquid film thickness
- Wall temperature can also be reduced by prevent coalescence which will keep the device cool and therefore reliable and efficient
- Coalescence can be avoided by following specific bubble train conditions that have been mapped
- Our final design utilized case 1 with coalescence occurring upstream of the heated region, giving us a max heat transfer rate of roughly 30 kW/m² and an average wall temperature of 78 deg C, which meets our design parameters

REFERENCES

[1] R. Mishra, "electronics Cooling," 2004. [Online]. Available: https://www.electronicscooling.com/2004/02/the-temperature-ratings-ofelectronic-parts/. [Accessed 08 12 2021]. [2] M. Nabil and A. S. Rattner, "interThermalPhaseChangeFoam - A framework for

two-phase flow simulations with thermally driven phase change," *ScienceDirect,* pp. 216-226, 2016.

CONTACTS

Brady Kueneman

Email: brady.kueneman1@ucalgary.ca Phone: (403) 970-4096 Website:

https://engineeringdesignfair.ucalgary.ca/m echanical/numerical-simulation-of-boilingheat-transfer-in-microchannels/

Connor Lowe-Wylde

Email: john.lowewylde@ucalgary.ca Phone: (403) 582-0150

Background

- Microprocessors generate significant heat Military High Power Optical Systems, Commercial Systems, Electronic Systems, and High-Performance Computing Systems Microchannel Cooling can be utilized Imbedded very close to the heat sources • Large heat transfer area per unit fluid flow Latent Heat of Working Fluid (Phase Change)

- Benefits of Microchannel Cooling

Problem

- How can we improve Microchannel cooling efficiency to keep up with microprocessor development?
- transfer through increasing bubble volume Determine how coalescence impacts the heat transfer and what conditions cause it Determine what working fluids are most effective in the microchannel case
- Optimize bubble sizes to maximize heat

- **Design Parameters**
- Wall temperature of approximately 70 deg C [1] Minimum heat transfer flux of 10 kW/m²

OpenFoam

- Used to develop accurate simulations for the boiling Microchannel
- Leading Open-Source Computational Fluid Dynamics (CFD) software
- Utilize custom interThermalPhaseChangeFoam
- solver [2] Finite Volume and Volume of Fluid Methods

Setup

- 30mm x 1mm x 1mm Adiabatic and Heated sections Constant Heat Flux 90,000 W/m² Inlet Velocity of 0.26m/s r134a Fluid initialized

$T = T_{sat}$

Numerical Simulation of Boiling Heat Transfer in Microchannels

Brady Kueneman; Connor Lowe-Wylde Schulich School of Engineering, University of Calgary

INTRODUCTION

- Improved device efficiency
- Improved cooling; higher reliability

METHODS

Assumptions - Incompressible Flow, negligible gravity, and laminar flow

Figure 1. Microchannel Schematic

RESULTS/DISCUSSION

Heat Transfer Optimization

- Five cases were analyzed with various bubble sizes to determine optimum conditions
- Initial Volume was held constant for each case

 Table 1. Optimization Cases - Dimensionless Equivalent
Diameters

Case		1 st Bubb	ole	
1		0.768		
2		0.826		
3		0.877		
4		0.922		
5		0.963		
30		-	- 1 - 2 -	-34 -
E 25				
20 ansfer				
Heat Ti				
10 IO				
2 tochar				
0 Mic	0 2	10	20	30 Time [m

- **Figure 3.** Microchannel Heat Transfer Optimization Figure 3 above shows the first case which generates the highest heat transfer, with peak a peak power of roughly 30kW/m²
 - This is because it coalesces before the heated region
- The second case generates the lowest heat transfer
- This is because it coalesces inside the heated region
- Coalescence in heated region causes less heat transfer due to a large liquid film between the bubble and wall
- Cases 3, 4, and 5 do not coalesce and thus all behave very similar.

- sequential order at varying time steps
- allowing it to have a thin liquid film and
- Case 2 coalesces in the heated region and thus oscillations cause the liquid film to be bubble volume)
- the heat absorbing.
- absorb much heat
- and becomes larger
- most efficient at increasing heat transfer
- Devise a map to understand what conditions cause coalescence so we can
- heat transfer
- varied their volumes
- give us equivalent diameter
- the black line we will induce coalescence
- to induce coalescence

Cases